
Constructive Computer Architecture

Caches and store buffers

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 23, 2017 http://csg.csail.mit.edu/6.175 L15-1



Inside a Cache

A cache line usually holds more than one word to

 exploit spatial locality

 transport large data sets more efficiently

 reduce the number of tag bits needed to identify a 
cache line

cache line
tag                  data

Data from locations 
100, 101, ...

Data
Byte

Data
Byte100

304

6848

valid 
bit

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-2



Extracting address tags & 
index

Processor requests are for a single word but cache 
line size is 2L words (typically L=2)

Processor uses word-aligned byte addresses, i.e. 
the two least significant bits of the address are 00

Need getIndex, getTag, getOffset functions 

tag              index    L  2

Cache size in bytes

Byte 
addresses

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-3



Direct-Mapped Cache
The simplest implementation

Tag Data BlockV

=

OffsetTag Index

t k b

t

HIT Data Word or Byte

2k

lines

Cache line  number

What is a bad reference pattern? Strided and 

stride = size of cache

req address

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-4



Loads
Search the cache for the processor 

generated address 

Found in cache 

a.k.a.  hit

Return a copy of 
the word from the 
cache-line

Not in cache

a.k.a. miss

Bring the missing cache-line 
from Main Memory 

May require writing back a 
cache-line to create space

…

Update cache and 

return word to processor

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-5



Stores

On a write hit: write only to cache and update the 
next level memory when line is evacuated

On a write miss:  allocate – because of multi-
word lines we first fetch the line, and then update 
a word in it

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-6



Blocking vs. Non-Blocking 
cache

Blocking cache:

 At most one outstanding miss

 Cache must wait for memory to respond

 Cache does not accept requests in the 
meantime

Non-blocking cache:

 Multiple outstanding misses

 Cache can continue to process requests while 
waiting for memory to respond to misses

We will design a write-back, Write-miss allocate, Direct-
mapped, blocking cache

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-7



Cache Interface

interface Cache;

method Action req(MemReq r); 

// (op: Ld/St, addr: ..., data: ...) 

method ActionValue#(Data) resp; 

// no response for St

method ActionValue#(MemReq) memReq;

method Action memResp(Line r);

endinterface

cache

req

resp

memReq

memResp

Processor
DRAM or 
next level 
cache

hitQ

mReqQ

mRespQ

mshr

Miss request 
Handling 
Register(s)

Requests are tagged for  
non-blocking caches

Can be replaced 
by first and deq
methods

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-8



Interface dynamics
The cache either gets a hit and responds 
immediately, or it gets a miss, in which case it 
takes several steps to process the miss

Reading the response dequeues it

 Resp can be replaced by first and deq methods

Methods are guarded, e.g., cache may not be 
ready to accept a request because it is 
processing a miss

A mshr register keeps track of the state of the 
request while processing it
typedef enum {Ready, StartMiss, SendFillReq, 

WaitFillResp} ReqStatus deriving (Bits, Eq); 

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-9



Blocking cache
state elements
RegFile#(CacheIndex, Line) dataArray <- mkRegFileFull;

RegFile#(CacheIndex, Maybe#(CacheTag))

tagArray <- mkRegFileFull;

RegFile#(CacheIndex, Bool) dirtyArray <- mkRegFileFull;

Fifo#(1, Data) hitQ <- mkBypassFifo;

Reg#(MemReq)     missReq <- mkRegU;

Reg#(ReqStatus) mshr <- mkReg(Ready);

Fifo#(2, MemReq) memReqQ <- mkCFFifo;

Fifo#(2, Line) memRespQ <- mkCFFifo;

CF Fifos are preferable 
because they provide better 
decoupling. An extra cycle 
here may not affect the 
performance by much

Tag and valid bits 
are kept together 
as a Maybe type

mshr and missReq
go together

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-10



Req method
Blocking cache

method Action req(MemReq r) if(mshr == Ready);

let idx = getIdx(r.addr); let tag = getTag(r.addr);

let wOffset = getOffset(r.addr);

let currTag = tagArray.sub(idx);

let hit = isValid(currTag)? 

fromMaybe(?,currTag)==tag : False; 

if(hit) begin

let x = dataArray.sub(idx);

if(r.op == Ld) hitQ.enq(x[wOffset]);

else begin x[wOffset]=r.data; 

dataArray.upd(idx, x);

dirtyArray.upd(idx, True); end

else begin missReq <= r; mshr <= StartMiss; end

endmethod

overwrite the 
appropriate  word 
of the line

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-11



Miss processing

mshr = StartMiss 

 if the slot is occupied by dirty data, initiate a write 
back of data

 mshr <= SendFillReq

mshr = SendFillReq 

 send request to the memory 

 mshr <= WaitFillReq

mshr = WaitFillReq 

 Fill the slot when the data is returned from the 
memory and put the load response in hitQ

 mshr <= Ready

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-12



Start-miss and Send-fill 
rules

rule startMiss(mshr == StartMiss);

let idx = getIdx(missReq.addr); 

let tag=tagArray.sub(idx); let dirty=dirtyArray.sub(idx);

if(isValid(tag) && dirty) begin // write-back

let addr = {fromMaybe(?,tag), idx, 4'b0};

let data = dataArray.sub(idx);

memReqQ.enq(MemReq{op: St, addr: addr, data: data});

end

mshr <= SendFillReq;

endrule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule sendFillReq (mshr == SendFillReq);

memReqQ.enq(missReq);   mshr <= WaitFillResp;

endrule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-13



Wait-fill rule
Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule waitFillResp(mshr == WaitFillResp);

let idx = getIdx(missReq.addr);

let tag = getTag(missReq.addr);

let data = memRespQ.first;

tagArray.upd(idx, Valid (tag));

if(missReq.op == Ld) begin

dirtyArray.upd(idx,False);dataArray.upd(idx, data);

hitQ.enq(data[wOffset]); end

else begin data[wOffset] = missReq.data;    

dirtyArray.upd(idx,True); dataArray.upd(idx, data);

end

memRespQ.deq; mshr <= Ready;

endrule

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-14



Rest of the methods
method ActionValue#(Data) resp;

hitQ.deq;

return hitQ.first;

endmethod

method ActionValue#(MemReq) memReq;

memReqQ.deq;

return memReqQ.first;

endmethod

method Action memResp(Line r);

memRespQ.enq(r);

endmethod

Memory side 
methods

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-15



Hit and miss performance
Hit

 Directly related to the latency of L1

 0-cycle latency if hitQ is a bypass FIFO

Miss

 No evacuation: memory load latency plus 
combinational read/write

 Evacuation: memory store followed by memory load 
latency plus combinational read/write

Adding a few extra cycles in the miss case does not 
have a big impact on  performance

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-16



Speeding up Store Misses
Unlike a load, a store does not require 
memory system to return any data to the 
processor; it only requires the cache to be 
updated for future load accesses

Instead of delaying the pipeline, a store can 
be performed in the background; In case of a 
miss the data does not have to be brought 
into L1 at all (Write-miss no allocate policy)

mReqQ

mRespQ

L1

Store buffer(stb)
a small FIFO 
of (a,v) pairs

Store Buffer

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-17



Store Buffer
A St req is enqueued into stb

 input reqs are blocked if there is no space in stb

A Ld req simultaneously searches L1 and stb; 

 If Ld gets a hit in stb – it selects the most recent matching 
entry; L1 search result is discarded

 If Ld gets a miss in stb but a hit in L1, the L1 result is returned

 If no match in either stb and L1, miss-processing commences

In background, oldest store in stb is dequed and processed

 If St address hits in L1: update L1; if write-through then also 
send to it to memory

 If it misses:

 Write-back write-miss-allocate: fetch the cache line from 
memory (miss processing) and then process the store

 Write-back/Write-through write-miss-no-allocate: pass the 
store to memory

mReqQ

mRespQ
L1

Store buffer(stb)
a small FIFO 
of (a,v) pairs

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-18



L1+Store Buffer (write-back, write-miss-allocate):

Req method
method Action req(MemReq r) if(mshr == Ready);

... get idx, tag and wOffset

if(r.op == Ld) begin // search stb

let x = stb.search(r.addr); 

if (isValid(x)) hitQ.enq(fromMaybe(?, x));

else begin // search L1

let currTag = tagArray.sub(idx);

let hit = isValid(currTag) ? 

fromMaybe(?,currTag)==tag : False; 

if(hit) begin

let x = dataArray.sub(idx); hitQ.enq(x[wOffset]); end

else begin missReq <= r; mshr <= StartMiss; end

end     end

else stb.enq(r.addr,r.data); // r.op == St

endmethod

No change in miss 
handling rules

Entry into store buffer
October 23, 2017 http://csg.csail.mit.edu/6.175 L13-19



L1+Store Buffer (write-back, write-miss-allocate):

Exit from Store Buff
rule mvStbToL1 (mshr == Ready);

stb.deq; match {.addr, .data} = stb.first;

// move the oldest entry of stb into L1

// may start allocation/evacuation

... get idx, tag and wOffset

let currTag = tagArray.sub(idx);

let hit = isValid(currTag) ? 

fromMaybe(?,currTag)==tag : False; 

if(hit) begin

let x = dataArray.sub(idx); x[wOffset] = data; 

dataArray.upd(idx,x); dirtyArray.upd(idx, True);  end

else begin missReq <= r; mshr <= StartMiss; end

endrule

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-20



Give priority to req method 
in accessing L1
method Action req(MemReq r) if(mshr == Ready);

... get idx, tag and wOffset

if(r.op == Ld) begin // search stb

let x = stb.search(r.addr); 

if (isValid(x)) hitQ.enq(fromMaybe(?, x));

else begin // search L1

...

else stb.enq(r.addr,r.data) // r.op == St

endmethod

lockL1[0] <= True;

rule clearL1Lock; lockL1[1] <= False; endrule

&& !lockL1[1]

Lock L1 while 
processing 
processor 
requests

rule mvStbToL1 (mshr == Ready);

stb.deq; match {.addr, .data} = stb.first;

... get idx, tag and wOffset

endrule

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-21



Functions to extract cache 
tag, index, word offset

tag              index    L  2

Cache size in bytes

Byte 
addresses

function CacheIndex getIndex(Addr addr) = truncate(addr>>4);

function Bit#(2) getOffset(Addr addr) = truncate(addr >> 2);

function CacheTag getTag(Addr addr)   = truncateLSB(addr);

truncate = truncateMSB

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-22


