
Constructive Computer Architecture

Caches and store buffers

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 23, 2017 http://csg.csail.mit.edu/6.175 L15-1

Inside a Cache

A cache line usually holds more than one word to

 exploit spatial locality

 transport large data sets more efficiently

 reduce the number of tag bits needed to identify a
cache line

cache line
tag data

Data from locations
100, 101, ...

Data
Byte

Data
Byte100

304

6848

valid
bit

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-2

Extracting address tags &
index

Processor requests are for a single word but cache
line size is 2L words (typically L=2)

Processor uses word-aligned byte addresses, i.e.
the two least significant bits of the address are 00

Need getIndex, getTag, getOffset functions

tag index L 2

Cache size in bytes

Byte
addresses

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-3

Direct-Mapped Cache
The simplest implementation

Tag Data BlockV

=

OffsetTag Index

t k b

t

HIT Data Word or Byte

2k

lines

Cache line number

What is a bad reference pattern? Strided and

stride = size of cache

req address

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-4

Loads
Search the cache for the processor

generated address

Found in cache

a.k.a. hit

Return a copy of
the word from the
cache-line

Not in cache

a.k.a. miss

Bring the missing cache-line
from Main Memory

May require writing back a
cache-line to create space

…

Update cache and

return word to processor

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-5

Stores

On a write hit: write only to cache and update the
next level memory when line is evacuated

On a write miss: allocate – because of multi-
word lines we first fetch the line, and then update
a word in it

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-6

Blocking vs. Non-Blocking
cache

Blocking cache:

 At most one outstanding miss

 Cache must wait for memory to respond

 Cache does not accept requests in the
meantime

Non-blocking cache:

 Multiple outstanding misses

 Cache can continue to process requests while
waiting for memory to respond to misses

We will design a write-back, Write-miss allocate, Direct-
mapped, blocking cache

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-7

Cache Interface

interface Cache;

method Action req(MemReq r);

// (op: Ld/St, addr: ..., data: ...)

method ActionValue#(Data) resp;

// no response for St

method ActionValue#(MemReq) memReq;

method Action memResp(Line r);

endinterface

cache

req

resp

memReq

memResp

Processor
DRAM or
next level
cache

hitQ

mReqQ

mRespQ

mshr

Miss request
Handling
Register(s)

Requests are tagged for
non-blocking caches

Can be replaced
by first and deq
methods

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-8

Interface dynamics
The cache either gets a hit and responds
immediately, or it gets a miss, in which case it
takes several steps to process the miss

Reading the response dequeues it

 Resp can be replaced by first and deq methods

Methods are guarded, e.g., cache may not be
ready to accept a request because it is
processing a miss

A mshr register keeps track of the state of the
request while processing it
typedef enum {Ready, StartMiss, SendFillReq,

WaitFillResp} ReqStatus deriving (Bits, Eq);

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-9

Blocking cache
state elements
RegFile#(CacheIndex, Line) dataArray <- mkRegFileFull;

RegFile#(CacheIndex, Maybe#(CacheTag))

tagArray <- mkRegFileFull;

RegFile#(CacheIndex, Bool) dirtyArray <- mkRegFileFull;

Fifo#(1, Data) hitQ <- mkBypassFifo;

Reg#(MemReq) missReq <- mkRegU;

Reg#(ReqStatus) mshr <- mkReg(Ready);

Fifo#(2, MemReq) memReqQ <- mkCFFifo;

Fifo#(2, Line) memRespQ <- mkCFFifo;

CF Fifos are preferable
because they provide better
decoupling. An extra cycle
here may not affect the
performance by much

Tag and valid bits
are kept together
as a Maybe type

mshr and missReq
go together

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-10

Req method
Blocking cache

method Action req(MemReq r) if(mshr == Ready);

let idx = getIdx(r.addr); let tag = getTag(r.addr);

let wOffset = getOffset(r.addr);

let currTag = tagArray.sub(idx);

let hit = isValid(currTag)?

fromMaybe(?,currTag)==tag : False;

if(hit) begin

let x = dataArray.sub(idx);

if(r.op == Ld) hitQ.enq(x[wOffset]);

else begin x[wOffset]=r.data;

dataArray.upd(idx, x);

dirtyArray.upd(idx, True); end

else begin missReq <= r; mshr <= StartMiss; end

endmethod

overwrite the
appropriate word
of the line

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-11

Miss processing

mshr = StartMiss 

 if the slot is occupied by dirty data, initiate a write
back of data

 mshr <= SendFillReq

mshr = SendFillReq 

 send request to the memory

 mshr <= WaitFillReq

mshr = WaitFillReq 

 Fill the slot when the data is returned from the
memory and put the load response in hitQ

 mshr <= Ready

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-12

Start-miss and Send-fill
rules

rule startMiss(mshr == StartMiss);

let idx = getIdx(missReq.addr);

let tag=tagArray.sub(idx); let dirty=dirtyArray.sub(idx);

if(isValid(tag) && dirty) begin // write-back

let addr = {fromMaybe(?,tag), idx, 4'b0};

let data = dataArray.sub(idx);

memReqQ.enq(MemReq{op: St, addr: addr, data: data});

end

mshr <= SendFillReq;

endrule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule sendFillReq (mshr == SendFillReq);

memReqQ.enq(missReq); mshr <= WaitFillResp;

endrule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-13

Wait-fill rule
Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule waitFillResp(mshr == WaitFillResp);

let idx = getIdx(missReq.addr);

let tag = getTag(missReq.addr);

let data = memRespQ.first;

tagArray.upd(idx, Valid (tag));

if(missReq.op == Ld) begin

dirtyArray.upd(idx,False);dataArray.upd(idx, data);

hitQ.enq(data[wOffset]); end

else begin data[wOffset] = missReq.data;

dirtyArray.upd(idx,True); dataArray.upd(idx, data);

end

memRespQ.deq; mshr <= Ready;

endrule

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-14

Rest of the methods
method ActionValue#(Data) resp;

hitQ.deq;

return hitQ.first;

endmethod

method ActionValue#(MemReq) memReq;

memReqQ.deq;

return memReqQ.first;

endmethod

method Action memResp(Line r);

memRespQ.enq(r);

endmethod

Memory side
methods

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-15

Hit and miss performance
Hit

 Directly related to the latency of L1

 0-cycle latency if hitQ is a bypass FIFO

Miss

 No evacuation: memory load latency plus
combinational read/write

 Evacuation: memory store followed by memory load
latency plus combinational read/write

Adding a few extra cycles in the miss case does not
have a big impact on performance

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-16

Speeding up Store Misses
Unlike a load, a store does not require
memory system to return any data to the
processor; it only requires the cache to be
updated for future load accesses

Instead of delaying the pipeline, a store can
be performed in the background; In case of a
miss the data does not have to be brought
into L1 at all (Write-miss no allocate policy)

mReqQ

mRespQ

L1

Store buffer(stb)
a small FIFO
of (a,v) pairs

Store Buffer

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-17

Store Buffer
A St req is enqueued into stb

 input reqs are blocked if there is no space in stb

A Ld req simultaneously searches L1 and stb;

 If Ld gets a hit in stb – it selects the most recent matching
entry; L1 search result is discarded

 If Ld gets a miss in stb but a hit in L1, the L1 result is returned

 If no match in either stb and L1, miss-processing commences

In background, oldest store in stb is dequed and processed

 If St address hits in L1: update L1; if write-through then also
send to it to memory

 If it misses:

 Write-back write-miss-allocate: fetch the cache line from
memory (miss processing) and then process the store

 Write-back/Write-through write-miss-no-allocate: pass the
store to memory

mReqQ

mRespQ
L1

Store buffer(stb)
a small FIFO
of (a,v) pairs

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-18

L1+Store Buffer (write-back, write-miss-allocate):

Req method
method Action req(MemReq r) if(mshr == Ready);

... get idx, tag and wOffset

if(r.op == Ld) begin // search stb

let x = stb.search(r.addr);

if (isValid(x)) hitQ.enq(fromMaybe(?, x));

else begin // search L1

let currTag = tagArray.sub(idx);

let hit = isValid(currTag) ?

fromMaybe(?,currTag)==tag : False;

if(hit) begin

let x = dataArray.sub(idx); hitQ.enq(x[wOffset]); end

else begin missReq <= r; mshr <= StartMiss; end

end end

else stb.enq(r.addr,r.data); // r.op == St

endmethod

No change in miss
handling rules

Entry into store buffer
October 23, 2017 http://csg.csail.mit.edu/6.175 L13-19

L1+Store Buffer (write-back, write-miss-allocate):

Exit from Store Buff
rule mvStbToL1 (mshr == Ready);

stb.deq; match {.addr, .data} = stb.first;

// move the oldest entry of stb into L1

// may start allocation/evacuation

... get idx, tag and wOffset

let currTag = tagArray.sub(idx);

let hit = isValid(currTag) ?

fromMaybe(?,currTag)==tag : False;

if(hit) begin

let x = dataArray.sub(idx); x[wOffset] = data;

dataArray.upd(idx,x); dirtyArray.upd(idx, True); end

else begin missReq <= r; mshr <= StartMiss; end

endrule

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-20

Give priority to req method
in accessing L1
method Action req(MemReq r) if(mshr == Ready);

... get idx, tag and wOffset

if(r.op == Ld) begin // search stb

let x = stb.search(r.addr);

if (isValid(x)) hitQ.enq(fromMaybe(?, x));

else begin // search L1

...

else stb.enq(r.addr,r.data) // r.op == St

endmethod

lockL1[0] <= True;

rule clearL1Lock; lockL1[1] <= False; endrule

&& !lockL1[1]

Lock L1 while
processing
processor
requests

rule mvStbToL1 (mshr == Ready);

stb.deq; match {.addr, .data} = stb.first;

... get idx, tag and wOffset

endrule

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-21

Functions to extract cache
tag, index, word offset

tag index L 2

Cache size in bytes

Byte
addresses

function CacheIndex getIndex(Addr addr) = truncate(addr>>4);

function Bit#(2) getOffset(Addr addr) = truncate(addr >> 2);

function CacheTag getTag(Addr addr) = truncateLSB(addr);

truncate = truncateMSB

October 23, 2017 http://csg.csail.mit.edu/6.175 L13-22

